Multivariable models

2022-09-20

Contents

Homework . 1
Homework Exercises: . 1
Notes on Homework: . 1

Homework

Homework Exercises:

Self-study: Work these exercises, but do not turn them in.

- Exercises 5E1-5E4

Turn in: Work these exercises and turn them in.

- Exercises 5M3, 5M4, 5H3

Notes on Homework:

Exercise 5E4 gets at a subtle point about independence of variables when you have indicators for categories. This connects to a subtle, but important point about identifiability in models. When you can infer the exact value of a variable from other variables, then including the exactly predictable variable in your models can create problems by making the models non-identifiable. A good example is if you have indicator variables male and female for biological sex (for simplicity, I am leaving out the possibility of intersex individuals). If you have a regression model $y \alpha+\beta_{1} I_{\text {male }}+\beta_{1} I_{\text {female }}$, then the model will predict the same result if you use parameters $\alpha^{\prime}=\alpha+\delta, \beta_{1}^{\prime}=\beta_{1}-\delta$, and $\beta_{2}^{\prime}=\beta_{2}-\delta$. If you omit $I_{\text {male }}$ or $I_{\text {female }}$ from your model (but not both), you will have a model that works just as well (because $I_{\text {male }}=1-I_{\text {female }}$, so the model will have just as much information), but the model will now be completely identifiable because we can't get equivalent results by changing α and β. This is why the kind of analysis in this exercise, to check whether a model is fully identifiable, is important.

