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8.5. Practice
Problems are labeled Easy (E), Medium (M), and Hard (H).

8E1. For each of the causal relationships below, name a hypothetical third variable that would lead 
to an interaction effect.

(1) Bread dough rises because of yeast.
(2) Education leads to higher income.
(3) Gasoline makes a car go.

8E2. Which of the following explanations invokes an interaction?
(1) Caramelizing onions requires cooking over low heat and making sure the onions do not

dry out.
(2) A car will go faster when it has more cylinders or when it has a better fuel injector.
(3) Most people acquire their political beliefs from their parents, unless they get them instead

from their friends.
(4) Intelligent animal species tend to be either highly social or have manipulative appendages

(hands, tentacles, etc.).

8E3. For each of the explanations in 8E2, write a linear model that expresses the stated relationship.
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8M1. Recall the tulips example from the chapter. Suppose another set of treatments adjusted the
temperature in the greenhouse over two levels: cold and hot. The data in the chapter were collected
at the cold temperature. You find none of the plants grown under the hot temperature developed
any blooms at all, regardless of the water and shade levels. Can you explain this result in terms of
interactions between water, shade, and temperature?

8M2. Can you invent a regression equation that would make the bloom size zero, whenever the
temperature is hot?

8M3. In parts of North America, ravens depend upon wolves for their food. This is because ravens
are carnivorous but cannot usually kill or open carcasses of prey. Wolves however can and do kill
and tear open animals, and they tolerate ravens co-feeding at their kills. This species relationship
is generally described as a “species interaction.” Can you invent a hypothetical set of data on raven
population size in which this relationship would manifest as a statistical interaction? Do you think
the biological interaction could be linear? Why or why not?

8M4. Repeat the tulips analysis, but this time use priors that constrain the effect of water to be pos-
itive and the effect of shade to be negative. Use prior predictive simulation. What do these prior
assumptions mean for the interaction prior, if anything?

8H1. Return to the data(tulips) example in the chapter. Now include the bed variable as a pre-
dictor in the interaction model. Don’t interact bed with the other predictors; just include it as a main
effect. Note that bed is categorical. So to use it properly, you will need to either construct dummy
variables or rather an index variable, as explained in Chapter 5.

8H2. Use WAIC to compare the model from 8H1 to a model that omits bed. What do you infer
from this comparison? Can you reconcile the WAIC results with the posterior distribution of the bed
coefficients?

8H3. Consider again the data(rugged) data on economic development and terrain ruggedness,
examined in this chapter. One of the African countries in that example, Seychelles, is far outside
the cloud of other nations, being a rare country with both relatively high GDP and high ruggedness.
Seychelles is also unusual, in that it is a group of islands far from the coast of mainland Africa, and
its main economic activity is tourism.

(a) Focus on model m8.5 from the chapter. Use WAIC pointwise penalties and PSIS Pareto k
values to measure relative influence of each country. By these criteria, is Seychelles influencing the
results? Are there other nations that are relatively influential? If so, can you explain why?

(b) Now use robust regression, as described in the previous chapter. Modify m8.5 to use a
Student-t distribution with ν = 2. Does this change the results in a substantial way?

8H4. The values in data(nettle) are data on language diversity in 74 nations.143 The meaning of
each column is given below.

(1) country: Name of the country
(2) num.lang: Number of recognized languages spoken
(3) area: Area in square kilometers
(4) k.pop: Population, in thousands
(5) num.stations: Number of weather stations that provided data for the next two columns
(6) mean.growing.season: Average length of growing season, in months
(7) sd.growing.season: Standard deviation of length of growing season, in months

Use these data to evaluate the hypothesis that language diversity is partly a product of food secu-
rity. The notion is that, in productive ecologies, people don’t need large social networks to buffer them
against risk of food shortfalls. This means cultural groups can be smaller and more self-sufficient,
leading to more languages per capita. Use the number of languages per capita as the outcome:
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R code
8.27 d$lang.per.cap <- d$num.lang / d$k.pop

Use the logarithm of this new variable as your regression outcome. (A count model would be bet-
ter here, but you’ll learn those later, in Chapter 11.) This problem is open ended, allowing you to
decide how you address the hypotheses and the uncertain advice the modeling provides. If you
think you need to use WAIC anyplace, please do. If you think you need certain priors, argue for
them. If you think you need to plot predictions in a certain way, please do. Just try to honestly
evaluate the main effects of both mean.growing.season and sd.growing.season, as well as their
two-way interaction. Here are three parts to help. (a) Evaluate the hypothesis that language diversity,
as measured by log(lang.per.cap), is positively associated with the average length of the grow-
ing season, mean.growing.season. Consider log(area) in your regression(s) as a covariate (not
an interaction). Interpret your results. (b) Now evaluate the hypothesis that language diversity is
negatively associated with the standard deviation of length of growing season, sd.growing.season.
This hypothesis follows from uncertainty in harvest favoring social insurance through larger social
networks and therefore fewer languages. Again, consider log(area) as a covariate (not an inter-
action). Interpret your results. (c) Finally, evaluate the hypothesis that mean.growing.season and
sd.growing.season interact to synergistically reduce language diversity. The idea is that, in nations
with longer average growing seasons, high variance makes storage and redistribution even more im-
portant than it would be otherwise. That way, people can cooperate to preserve and protect windfalls
to be used during the droughts.

8H5. Consider the data(Wines2012) data table. These data are expert ratings of 20 different French
and American wines by 9 different French and American judges. Your goal is to model score, the
subjective rating assigned by each judge to each wine. I recommend standardizing it. In this problem,
consider only variation among judges and wines. Construct index variables of judge and wine and
then use these index variables to construct a linear regression model. Justify your priors. You should
end up with 9 judge parameters and 20 wine parameters. How do you interpret the variation among
individual judges and individual wines? Do you notice any patterns, just by plotting the differences?
Which judges gave the highest/lowest ratings? Which wines were rated worst/best on average?

8H6. Now consider three features of the wines and judges:
(1) flight: Whether the wine is red or white.
(2) wine.amer: Indicator variable for American wines.
(3) judge.amer: Indicator variable for American judges.

Use indicator or index variables to model the influence of these features on the scores. Omit the
individual judge and wine index variables from Problem 1. Do not include interaction effects yet.
Again justify your priors. What do you conclude about the differences among the wines and judges?
Try to relate the results to the inferences in the previous problem.

8H7. Now consider two-way interactions among the three features. You should end up with three
different interaction terms in your model. These will be easier to build, if you use indicator variables.
Again justify your priors. Explain what each interaction means. Be sure to interpret the model’s
predictions on the outcome scale (mu, the expected score), not on the scale of individual parameters.
You can use link to help with this, or just use your knowledge of the linear model instead. What do
you conclude about the features and the scores? Can you relate the results of your model(s) to the
individual judge and wine inferences from 8H5?
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9.6. Summary
This chapter has been an informal introduction to Markov chain Monte Carlo (MCMC)

estimation. The goal has been to introduce the purpose and approach MCMC algorithms.
The major algorithms introduced were the Metropolis, Gibbs sampling, and Hamiltonian
Monte Carlo algorithms. Each has its advantages and disadvantages. The ulam function in
the rethinking package was introduced. It uses the Stan (mc-stan.org) HamiltonianMonte
Carlo engine to fit models as they are defined in this book. General advice about diagnosing
poor MCMC fits was introduced by the use of a couple of pathological examples. In the next
chapters, we use this new power to learn new kinds of models.

9.7. Practice
Problems are labeled Easy (E), Medium (M), and Hard (H).

9E1. Which of the following is a requirement of the simple Metropolis algorithm?
(1) The parameters must be discrete.
(2) The likelihood function must be Gaussian.
(3) The proposal distribution must be symmetric.

9E2. Gibbs sampling is more efficient than the Metropolis algorithm. How does it achieve this extra
efficiency? Are there any limitations to the Gibbs sampling strategy?
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9E3. Which sort of parameters can Hamiltonian Monte Carlo not handle? Can you explain why?

9E4. Explain the difference between the effective number of samples, n_eff as calculated by Stan,
and the actual number of samples.

9E5. Which value should Rhat approach, when a chain is sampling the posterior distribution cor-
rectly?

9E6. Sketch a good trace plot for a Markov chain, one that is effectively sampling from the posterior
distribution. What is good about its shape? Then sketch a trace plot for a malfunctioning Markov
chain. What about its shape indicates malfunction?

9E7. Repeat the problem above, but now for a trace rank plot.

9M1. Re-estimate the terrain ruggedness model from the chapter, but now using a uniform prior
for the standard deviation, sigma. The uniform prior should be dunif(0,1). Use ulam to estimate
the posterior. Does the different prior have any detectible influence on the posterior distribution of
sigma? Why or why not?

9M2. Modify the terrain ruggednessmodel again. This time, change the prior forb[cid] todexp(0.3).
What does this do to the posterior distribution? Can you explain it?

9M3. Re-estimate one of the Stan models from the chapter, but at different numbers of warmup it-
erations. Be sure to use the same number of sampling iterations in each case. Compare the n_eff
values. How much warmup is enough?

9H1. Run the model below and then inspect the posterior distribution and explain what it is accom-
plishing.

R code
9.28mp <- ulam(

alist(
a ~ dnorm(0,1),
b ~ dcauchy(0,1)

), data=list(y=1) , chains=1 )

Compare the samples for the parameters a and b. Can you explain the different trace plots? If you are
unfamiliar with the Cauchy distribution, you should look it up. The key feature to attend to is that it
has no expected value. Can you connect this fact to the trace plot?

9H2. Recall the divorce rate example from Chapter 5. Repeat that analysis, using ulam this time,
fitting models m5.1, m5.2, and m5.3. Use compare to compare the models on the basis of WAIC
or PSIS. To use WAIC or PSIS with ulam, you need add the argument log_log=TRUE. Explain the
model comparison results.

9H3. Sometimes changing a prior for one parameter has unanticipated effects on other parameters.
This is because when a parameter is highly correlated with another parameter in the posterior, the
prior influences both parameters. Here’s an example to work and think through.

Go back to the leg length example in Chapter 6 and use the code there to simulate height and
leg lengths for 100 imagined individuals. Below is the model you fit before, resulting in a highly
correlated posterior for the two beta parameters. This time, fit the model using ulam:

R code
9.29
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m5.8s <- ulam(
alist(

height ~ dnorm( mu , sigma ) ,
mu <- a + bl*leg_left + br*leg_right ,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
br ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )

) , data=d, chains=4,
start=list(a=10,bl=0,br=0.1,sigma=1) )

Compare the posterior distribution produced by the code above to the posterior distribution pro-
duced when you change the prior for br so that it is strictly positive:

R code
9.30 m5.8s2 <- ulam(

alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + bl*leg_left + br*leg_right ,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
br ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )

) , data=d, chains=4,
constraints=list(br="lower=0"),
start=list(a=10,bl=0,br=0.1,sigma=1) )

Note the constraints list. What this does is constrain the prior distribution of br so that it has
positive probability only above zero. In other words, that prior ensures that the posterior distribution
for br will have no probability mass below zero. Compare the two posterior distributions for m5.8s
and m5.8s2. What has changed in the posterior distribution of both beta parameters? Can you
explain the change induced by the change in prior?

9H4. For the two models fit in the previous problem, use WAIC or PSIS to compare the effective
numbers of parameters for each model. You will need to use log_lik=TRUE to instruct ulam to
compute the terms that both WAIC and PSIS need. Which model has more effective parameters?
Why?

9H5. Modify the Metropolis algorithm code from the chapter to handle the case that the island
populations have a different distribution than the island labels. This means the island’s number will
not be the same as its population.

9H6. Modify the Metropolis algorithm code from the chapter to write your own simple MCMC
estimator for globe tossing data and model from Chapter 2.

9H7. Can you write your own Hamiltonian Monte Carlo algorithm for the globe tossing data, using
the R code in the chapter? You will have to write your own functions for the likelihood and gradient,
but you can use the HMC2 function.




