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9. 7. Practice

Problems are labeled Easy (E), Medium (M), and Hard (H). 

9£1. Which of the following is a requirement of the simple Metropolis algorithm? 

(1) The parameters must be discrete.
(2) The likelihood function must be Gaussian.
(3) The proposal distribution must be symmetric.

9£2. Gibbs sampling is more efficient than the Metropolis algorithm. How does it achieve this extra 
efficiency? Are there any limitations to the Gibbs sampling strategy? 



9.7. PRACTICE 297

9E3. Which sort of parameters can Hamiltonian Monte Carlo not handle? Can you explain why?

9E4. Explain the difference between the effective number of samples, n_eff as calculated by Stan,
and the actual number of samples.

9E5. Which value should Rhat approach, when a chain is sampling the posterior distribution cor-
rectly?

9E6. Sketch a good trace plot for a Markov chain, one that is effectively sampling from the posterior
distribution. What is good about its shape? Then sketch a trace plot for a malfunctioning Markov
chain. What about its shape indicates malfunction?

9E7. Repeat the problem above, but now for a trace rank plot.

9M1. Re-estimate the terrain ruggedness model from the chapter, but now using a uniform prior
for the standard deviation, sigma. The uniform prior should be dunif(0,1). Use ulam to estimate
the posterior. Does the different prior have any detectible influence on the posterior distribution of
sigma? Why or why not?

9M2. Modify the terrain ruggednessmodel again. This time, change the prior forb[cid] todexp(0.3).
What does this do to the posterior distribution? Can you explain it?

9M3. Re-estimate one of the Stan models from the chapter, but at different numbers of warmup it-
erations. Be sure to use the same number of sampling iterations in each case. Compare the n_eff
values. How much warmup is enough?

9H1. Run the model below and then inspect the posterior distribution and explain what it is accom-
plishing.

R code
9.28mp <- ulam(

alist(
a ~ dnorm(0,1),
b ~ dcauchy(0,1)

), data=list(y=1) , chains=1 )

Compare the samples for the parameters a and b. Can you explain the different trace plots? If you are
unfamiliar with the Cauchy distribution, you should look it up. The key feature to attend to is that it
has no expected value. Can you connect this fact to the trace plot?

9H2. Recall the divorce rate example from Chapter 5. Repeat that analysis, using ulam this time,
fitting models m5.1, m5.2, and m5.3. Use compare to compare the models on the basis of WAIC
or PSIS. To use WAIC or PSIS with ulam, you need add the argument log_log=TRUE. Explain the
model comparison results.

9H3. Sometimes changing a prior for one parameter has unanticipated effects on other parameters.
This is because when a parameter is highly correlated with another parameter in the posterior, the
prior influences both parameters. Here’s an example to work and think through.

Go back to the leg length example in Chapter 6 and use the code there to simulate height and
leg lengths for 100 imagined individuals. Below is the model you fit before, resulting in a highly
correlated posterior for the two beta parameters. This time, fit the model using ulam:

R code
9.29
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m5.8s <- ulam(
alist(

height ~ dnorm( mu , sigma ) ,
mu <- a + bl*leg_left + br*leg_right ,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
br ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )

) , data=d, chains=4,
start=list(a=10,bl=0,br=0.1,sigma=1) )

Compare the posterior distribution produced by the code above to the posterior distribution pro-
duced when you change the prior for br so that it is strictly positive:

R code
9.30 m5.8s2 <- ulam(

alist(
height ~ dnorm( mu , sigma ) ,
mu <- a + bl*leg_left + br*leg_right ,
a ~ dnorm( 10 , 100 ) ,
bl ~ dnorm( 2 , 10 ) ,
br ~ dnorm( 2 , 10 ) ,
sigma ~ dexp( 1 )

) , data=d, chains=4,
constraints=list(br="lower=0"),
start=list(a=10,bl=0,br=0.1,sigma=1) )

Note the constraints list. What this does is constrain the prior distribution of br so that it has
positive probability only above zero. In other words, that prior ensures that the posterior distribution
for br will have no probability mass below zero. Compare the two posterior distributions for m5.8s
and m5.8s2. What has changed in the posterior distribution of both beta parameters? Can you
explain the change induced by the change in prior?

9H4. For the two models fit in the previous problem, use WAIC or PSIS to compare the effective
numbers of parameters for each model. You will need to use log_lik=TRUE to instruct ulam to
compute the terms that both WAIC and PSIS need. Which model has more effective parameters?
Why?

9H5. Modify the Metropolis algorithm code from the chapter to handle the case that the island
populations have a different distribution than the island labels. This means the island’s number will
not be the same as its population.

9H6. Modify the Metropolis algorithm code from the chapter to write your own simple MCMC
estimator for globe tossing data and model from Chapter 2.

9H7. Can you write your own Hamiltonian Monte Carlo algorithm for the globe tossing data, using
the R code in the chapter? You will have to write your own functions for the likelihood and gradient,
but you can use the HMC2 function.
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11.5. Practice
Problems are labeled Easy (E), Medium (M), and Hard (H).

11E1. If an event has probability 0.35, what are the log-odds of this event?

11E2. If an event has log-odds 3.2, what is the probability of this event?

11E3. Suppose that a coefficient in a logistic regression has value 1.7. What does this imply about
the proportional change in odds of the outcome?

11E4. Why do Poisson regressions sometimes require the use of an offset? Provide an example.

11M1. As explained in the chapter, binomial data can be organized in aggregated and disaggregated
forms, without any impact on inference. But the likelihood of the data does change when the data are
converted between the two formats. Can you explain why?

11M2. If a coefficient in a Poisson regression has value 1.7, what does this imply about the change
in the outcome?

11M3. Explain why the logit link is appropriate for a binomial generalized linear model.

11M4. Explain why the log link is appropriate for a Poisson generalized linear model.

11M5. What would it imply to use a logit link for the mean of a Poisson generalized linear model?
Can you think of a real research problem for which this would make sense?

11M6. State the constraints for which the binomial and Poisson distributions have maximum en-
tropy. Are the constraints different at all for binomial and Poisson? Why or why not?

11M7. Use quap to construct a quadratic approximate posterior distribution for the chimpanzee
model that includes a unique intercept for each actor, m11.4 (page 330). Compare the quadratic
approximation to the posterior distribution produced instead from MCMC. Can you explain both
the differences and the similarities between the approximate and theMCMC distributions? Relax the
prior on the actor intercepts to Normal(0,10). Re-estimate the posterior using both ulam and quap.
Do the differences increase or decrease? Why?

11M8. Revisit the data(Kline) islands example. This time drop Hawaii from the sample and refit
the models. What changes do you observe?

11H1. Use WAIC or PSIS to compare the chimpanzee model that includes a unique intercept for
each actor, m11.4 (page 330), to the simpler models fit in the same section. Interpret the results.

11H2. The data contained in library(MASS);data(eagles) are records of salmon pirating at-
tempts by Bald Eagles in Washington State. See ?eagles for details. While one eagle feeds, some-
times another will swoop in and try to steal the salmon from it. Call the feeding eagle the “victim” and
the thief the “pirate.” Use the available data to build a binomial GLM of successful pirating attempts.

(a) Consider the following model:
yi ∼ Binomial(ni, pi)

logit(pi) = α+ βPPi + βVVi + βAAi

α ∼ Normal(0, 1.5)
βP, βV, βA ∼ Normal(0, 0.5)

where y is the number of successful attempts, n is the total number of attempts, P is a dummy variable
indicating whether or not the pirate had large body size, V is a dummy variable indicating whether
or not the victim had large body size, and finally A is a dummy variable indicating whether or not
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the pirate was an adult. Fit the model above to the eagles data, using both quap and ulam. Is the
quadratic approximation okay?

(b) Now interpret the estimates. If the quadratic approximation turned out okay, then it’s okay
to use the quap estimates. Otherwise stick to ulam estimates. Then plot the posterior predictions.
Compute and display both (1) the predictedprobability of success and its 89% interval for each row (i)
in the data, as well as (2) the predicted success count and its 89% interval. What different information
does each type of posterior prediction provide?

(c) Now try to improve the model. Consider an interaction between the pirate’s size and age
(immature or adult). Compare this model to the previous one, using WAIC. Interpret.

11H3. The data contained in data(salamanders) are counts of salamanders (Plethodon elongatus)
from 47 different 49-m2 plots in northern California.181 The column SALAMAN is the count in each
plot, and the columns PCTCOVER and FORESTAGE are percent of ground cover and age of trees in the
plot, respectively. You will model SALAMAN as a Poisson variable.

(a) Model the relationship between density and percent cover, using a log-link (same as the ex-
ample in the book and lecture). Use weakly informative priors of your choosing. Check the quadratic
approximation again, by comparing quap to ulam. Then plot the expected counts and their 89% in-
terval against percent cover. In which ways does the model do a good job? A bad job?

(b) Can you improve the model by using the other predictor, FORESTAGE? Try any models you
think useful. Can you explain why FORESTAGE helps or does not help with prediction?

11H4. Thedata indata(NWOGrants) are outcomes for scientific funding applications for theNether-
lands Organization for Scientific Research (NWO) from 2010–2012 (see van der Lee and Ellemers
(2015) for data and context). These data have a very similar structure to the UCBAdmit data discussed
in the chapter. I want you to consider a similar question: What are the total and indirect causal ef-
fects of gender on grant awards? Consider a mediation path (a pipe) through discipline. Draw the
corresponding DAG and then use one or more binomial GLMs to answer the question. What is your
causal interpretation? If NWO’s goal is to equalize rates of funding between men and women, what
type of intervention would be most effective?

11H5. Suppose that the NWO Grants sample has an unobserved confound that influences both
choice of discipline and the probability of an award. One example of such a confound could be the
career stage of each applicant. Suppose that in some disciplines, junior scholars apply for most of the
grants. In other disciplines, scholars fromall career stages compete. As a result, career stage influences
discipline as well as the probability of being awarded a grant. Add these influences to your DAG from
the previous problem. What happens now when you condition on discipline? Does it provide an
un-confounded estimate of the direct path from gender to an award? Why or why not? Justify your
answer with the backdoor criterion. If you have trouble thinking this though, try simulating fake
data, assuming your DAG is true. Then analyze it using the model from the previous problem. What
do you conclude? Is it possible for gender to have a real direct causal influence but for a regression
conditioning on both gender and discipline to suggest zero influence?

11H6. The data in data(Primates301) are 301 primate species and associated measures. In this
problem, you will consider how brain size is associated with social learning. There are three parts.

(a) Model the number of observations of social_learning for each species as a function of the
log brain size. Use a Poisson distribution for the social_learning outcome variable. Interpret the
resulting posterior. (b) Some species are studied much more than others. So the number of reported
instances of social_learning could be a product of research effort. Use the research_effort
variable, specifically its logarithm, as an additional predictor variable. Interpret the coefficient for log
research_effort. How does this model differ from the previous one? (c) Draw a DAG to represent
how you think the variables social_learning, brain, and research_effort interact. Justify the
DAG with the measured associations in the two models above (and any other models you used).




